Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Visual Theme Discovery from Joint Image and Text Corpora (1609.01859v1)

Published 7 Sep 2016 in cs.CV

Abstract: A popular approach to semantic image understanding is to manually tag images with keywords and then learn a mapping from vi- sual features to keywords. Manually tagging images is a subjective pro- cess and the same or very similar visual contents are often tagged with different keywords. Furthermore, not all tags have the same descriptive power for visual contents and large vocabulary available from natural language could result in a very diverse set of keywords. In this paper, we propose an unsupervised visual theme discovery framework as a better (more compact, efficient and effective) alternative to semantic represen- tation of visual contents. We first show that tag based annotation lacks consistency and compactness for describing visually similar contents. We then learn the visual similarity between tags based on the visual features of the images containing the tags. At the same time, we use a natural language processing technique (word embedding) to measure the seman- tic similarity between tags. Finally, we cluster tags into visual themes based on their visual similarity and semantic similarity measures using a spectral clustering algorithm. We conduct user studies to evaluate the effectiveness and rationality of the visual themes discovered by our unsu- pervised algorithm and obtains promising result. We then design three common computer vision tasks, example based image search, keyword based image search and image labelling to explore potential applica- tion of our visual themes discovery framework. In experiments, visual themes significantly outperforms tags on semantic image understand- ing and achieve state-of-art performance in all three tasks. This again demonstrate the effectiveness and versatility of proposed framework.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ke Sun (136 papers)
  2. Xianxu Hou (24 papers)
  3. Qian Zhang (308 papers)
  4. Guoping Qiu (61 papers)

Summary

We haven't generated a summary for this paper yet.