Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding the Topic of a Set of Images (1606.07921v1)

Published 25 Jun 2016 in cs.CV and cs.MM

Abstract: In this paper we introduce the problem of determining the topic that a set of images is describing, where every topic is represented as a set of words. Different from other problems like tag assignment or similar, a) we assume multiple images are used as input instead of single image, b) Input images are typically not visually related, c) Input images are not necessarily semantically close, and d) Output word space is unconstrained. In our proposed solution, visual information of each query image is used to retrieve similar images with text labels (tags) from an image database. We consider a scenario where the tags are very noisy and diverse, given that they were obtained by implicit crowd-sourcing in a database of 1 million images and over seventy seven thousand tags. The words or tags associated to each query are processed jointly in a word selection algorithm using random walks that allows to refine the search topic, rejecting words that are not part of the topic and produce a set of words that fairly describe the topic. Experiments on a dataset of 300 topics, with up to twenty images per topic, show that our algorithm performs better than the proposed baseline for any number of query images. We also present a new Conditional Random Field (CRF) word mapping algorithm that preserves the semantic similarity of the mapped words, increasing the performance of the results over the baseline.

Summary

We haven't generated a summary for this paper yet.