Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cost-efficient Scheduling on Machines from the Cloud (1609.01184v2)

Published 5 Sep 2016 in cs.DS

Abstract: We consider a scheduling problem where machines need to be rented from the cloud in order to process jobs. There are two types of machines available which can be rented for machine-type dependent prices and for arbitrary durations. However, a machine-type dependent setup time is required before a machine is available for processing. Jobs arrive online over time, have machine-type dependent sizes and have individual deadlines. The objective is to rent machines and schedule jobs so as to meet all deadlines while minimizing the rental cost. Since we observe the slack of jobs to have a fundamental influence on the competitiveness, we study the model when instances are parameterized by their (minimum) slack. An instance is called to have a slack of $\beta$ if, for all jobs, the difference between the job's release time and the latest point in time at which it needs to be started is at least $\beta$. While for $\beta < s$ no finite competitiveness is possible, our main result is an $O(\frac{c}{\varepsilon} + \frac{1}{\varepsilon3})$-competitive online algorithm for $\beta = (1+\varepsilon)s$ with $\frac{1}{s} \leq \varepsilon \leq 1$, where $s$ and $c$ denotes the largest setup time and the cost ratio of the machine-types, respectively. It is complemented by a lower bound of $\Omega(\frac{c}{\varepsilon})$.

Citations (8)

Summary

We haven't generated a summary for this paper yet.