Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximizing Online Utilization with Commitment (1904.06150v1)

Published 12 Apr 2019 in cs.DS

Abstract: We investigate online scheduling with commitment for parallel identical machines. Our objective is to maximize the total processing time of accepted jobs. As soon as a job has been submitted, the commitment constraint forces us to decide immediately whether we accept or reject the job. Upon acceptance of a job, we must complete it before its deadline $d$ that satisfies $d \geq (1+\epsilon)\cdot p + r$, with $p$ and $r$ being the processing time and the submission time of the job, respectively while $\epsilon>0$ is the slack of the system. Since the hard case typically arises for near-tight deadlines, we consider $\varepsilon\leq 1$. We use competitive analysis to evaluate our algorithms. Our first main contribution is a deterministic preemptive online algorithm with an almost tight competitive ratio on any number of machines. For a single machine, the competitive factor matches the optimal bound $\frac{1+\epsilon}{\epsilon}$ of the greedy acceptance policy. Then the competitive ratio improves with an increasing number of machines and approaches $(1+\epsilon)\cdot\ln \frac{1+\epsilon}{\epsilon}$ as the number of machines converges to infinity. This is an exponential improvement over the greedy acceptance policy for small $\epsilon$. In the non-preemptive case, we present a deterministic algorithm on $m$ machines with a competitive ratio of $1+m\cdot \left(\frac{1+\epsilon}{\epsilon}\right){\frac{1}{m}}$. This matches the optimal bound of $2+\frac{1}{\epsilon}$ of the greedy acceptance policy for a single machine while it again guarantees an exponential improvement over the greedy acceptance policy for small $\epsilon$ and large $m$. In addition, we determine an almost tight lower bound that approaches $m\cdot \left(\frac{1}{\epsilon}\right){\frac{1}{m}}$ for large $m$ and small $\epsilon$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chris Schwiegelshohn (35 papers)
  2. Uwe Schwiegelshohn (3 papers)

Summary

We haven't generated a summary for this paper yet.