Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Reconstruction from $k$-decks for graphs with maximum degree 2 (1609.00284v1)

Published 1 Sep 2016 in math.CO

Abstract: The $k$-deck of a graph is its multiset of induced subgraphs on $k$ vertices. We prove that $n$-vertex graphs with maximum degree $2$ have the same $k$-decks if each cycle has at least $k+1$ vertices, each path component has at least $k-1$ vertices, and the number of edges is the same. Using this for lower bounds, we obtain for each graph with maximum degree at most $2$ the least $k$ such that it is determined by its $k$-deck. For the $n$-vertex cycle this value is $\lfloor n/2 \rfloor$, and for the $n$-vertex path it is $\lfloor n/2 \rfloor+1$. Also, the least $k$ such that the $k$-deck of an $n$-vertex graph always determines whether it is connected is at least $\lfloor n/2 \rfloor +1$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.