Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flexibility of Planar Graphs -- Sharpening the Tools to Get Lists of Size Four (2004.10917v2)

Published 23 Apr 2020 in cs.DM and math.CO

Abstract: A graph where each vertex $v$ has a list $L(v)$ of available colors is $L$-colorable if there is a proper coloring such that the color of $v$ is in $L(v)$ for each $v$. A graph is $k$-choosable if every assignment $L$ of at least $k$ colors to each vertex guarantees an $L$-coloring. Given a list assignment $L$, an $L$-request for a vertex $v$ is a color $c\in L(v)$. In this paper, we look at a variant of the widely studied class of precoloring extension problems from [Z. Dvo\v{r}\'ak, S. Norin, and L. Postle: List coloring with requests. J. Graph Theory 2019], wherein one must satisfy "enough", as opposed to all, of the requested set of precolors. A graph $G$ is $\varepsilon$-flexible for list size $k$ if for any $k$-list assignment $L$, and any set $S$ of $L$-requests, there is an $L$-coloring of $G$ satisfying an $\varepsilon$-fraction of the requests in $S$. It is conjectured that planar graphs are $\varepsilon$-flexible for list size $5$, yet it is proved only for list size $6$ and for certain subclasses of planar graphs. We give a stronger version of the main tool used in the proofs of the aforementioned results. By doing so, we improve upon a result by Masa\v{r}\'ik and show that planar graphs without $K_4-$ are $\varepsilon$-flexible for list size $5$. We also prove that planar graphs without $4$-cycles and $3$-cycle distance at least 2 are $\varepsilon$-flexible for list size $4$. Finally, we introduce a new (slightly weaker) form of $\varepsilon$-flexibility where each vertex has exactly one request. In that setting, we provide a stronger tool and we demonstrate its usefulness to further extend the class of graphs that are $\varepsilon$-flexible for list size $5$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Ilkyoo Choi (42 papers)
  2. Felix Christian Clemen (26 papers)
  3. Michael Ferrara (16 papers)
  4. Paul Horn (18 papers)
  5. Fuhong Ma (6 papers)
  6. Tomáš Masařík (51 papers)
Citations (6)