Spectrum-splitting approach for Fermi-operator expansion in all-electron Kohn-Sham DFT calculations (1608.07865v1)
Abstract: We present a spectrum-splitting approach to conduct all-electron Kohn-Sham density functional theory (DFT) calculations by employing Fermi-operator expansion of the Kohn-Sham Hamiltonian. The proposed approach splits the subspace containing the occupied eigenspace into a core-subspace, spanned by the core eigenfunctions, and its complement, the valence-subspace, and thereby enables an efficient computation of the Fermi-operator expansion by reducing the expansion to the valence-subspace projected Kohn-Sham Hamiltonian. The key ideas used in our approach are: (i) employ Chebyshev filtering to compute a subspace containing the occupied states followed by a localization procedure to generate non-orthogonal localized functions spanning the Chebyshev-filtered subspace; (ii) compute the Kohn-Sham Hamiltonian projected onto the valence-subspace; (iii) employ Fermi-operator expansion in terms of the valence-subspace projected Hamiltonian to compute the density matrix, electron-density and band energy. We demonstrate the accuracy and performance of the method on benchmark materials systems involving silicon nano-clusters up to 1330 electrons, a single gold atom and a six-atom gold nano-cluster. The benchmark studies on silicon nano-clusters revealed a staggering five-fold reduction in the Fermi-operator expansion polynomial degree by using the spectrum-splitting approach for accuracies in the ground-state energies of $\sim 10{-4} Ha/atom$ with respect to reference calculations. Further, numerical investigations on gold suggest that spectrum splitting is indispensable to achieve meaningful accuracies, while employing Fermi-operator expansion.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.