Merits and Qualms of Work Fluctuations in Classical Fluctuation Theorems (1608.07025v2)
Abstract: Work is one of the most basic notion in statistical mechanics, with work fluctuation theorems being one central topic in nanoscale thermodynamics. With Hamiltonian chaos commonly thought to provide a foundation for classical statistical mechanics, here we present general salient results regarding how (classical) Hamiltonian chaos generically impacts on nonequilibrium work fluctuations. For isolated chaotic systems prepared with a microcanonical distribution, work fluctuations are minimized and vanish altogether in adiabatic work protocols. For isolated chaotic systems prepared at an initial canonical distribution at inverse temperature $\beta$, work fluctuations depicted by the variance of $e{-\beta W}$ are also minimized by adiabatic work protocols. This general result indicates that if the variance of $e{-\beta W}$ diverges for an adiabatic work protocol, then it diverges for all nonadiabatic work protocols sharing the same initial and final Hamiltonians. How such divergence explicitly impacts on the efficiency of using the Jarzynski's equality to simulate free energy differences is studied in a Sinai model. Our general insights shall boost studies in nanoscale thermodynamics and are of fundamental importance in designing useful work protocols.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.