Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Trust-Aware Neighbourhood in Trust-based Recommendation (1608.05380v1)

Published 18 Aug 2016 in cs.IR and cs.SI

Abstract: Traditional Recommender Systems (RS) do not consider any personal user information beyond rating history. Such information, on the other hand, is widely available on social networking sites (Facebook, Twitter). As a result, social networks have recently been used in recommendation systems. In this paper, we propose an efficient method for incorporating social signals into the recommendation process by building a trust network which supplements the users' rating profiles. We first show the effect of different cold-start users types on the Collaborative Filtering (CF) technique in several real-world datasets. Later, we propose a "Trust-Aware Neighbourhood" algorithm which addresses a performance issue of the former by limiting the trusted neighbourhood. We show the doubling of the rating coverage compared to the traditional CF technique, and a significant improvement in the accuracy for some datasets. Focusing specifically on cold-start users, we propose a "Hybrid Trust-Aware Neighbourhood" algorithm which expands the neighbourhood by considering both trust and rating history of the users. We show a near complete coverage with a rich trust network dataset-- Flixster. We conclude by discussing the potential implementation of this algorithm in a budget-constrained cloud environment.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Amira Ghenai (3 papers)
  2. Moustafa M. Ghanem (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.