Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 31 TPS
GPT-5 High 29 TPS Pro
GPT-4o 96 TPS
GPT OSS 120B 475 TPS Pro
Kimi K2 194 TPS Pro
2000 character limit reached

Training Echo State Networks with Regularization through Dimensionality Reduction (1608.04622v1)

Published 16 Aug 2016 in cs.NE and cs.LG

Abstract: In this paper we introduce a new framework to train an Echo State Network to predict real valued time-series. The method consists in projecting the output of the internal layer of the network on a space with lower dimensionality, before training the output layer to learn the target task. Notably, we enforce a regularization constraint that leads to better generalization capabilities. We evaluate the performances of our approach on several benchmark tests, using different techniques to train the readout of the network, achieving superior predictive performance when using the proposed framework. Finally, we provide an insight on the effectiveness of the implemented mechanics through a visualization of the trajectory in the phase space and relying on the methodologies of nonlinear time-series analysis. By applying our method on well known chaotic systems, we provide evidence that the lower dimensional embedding retains the dynamical properties of the underlying system better than the full-dimensional internal states of the network.

Citations (59)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.