Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

From Submodule Categories to the Stable Auslander Algebra (1607.08504v4)

Published 28 Jul 2016 in math.RT and math.RA

Abstract: We construct two functors from the submodule category of a self-injective representation-finite algebra $\Lambda$ to the module category of the stable Auslander algebra of $\Lambda$. These functors factor through the module category of the Auslander algebra of $\Lambda$. Moreover they induce equivalences from the quotient categories of the submodule category modulo their respective kernels and said kernels have finitely many indecomposable objects up to isomorphism. Their construction uses a recollement of the module category of the Auslander algebra induced by an idempotent and this recollement determines a characteristic tilting and cotilting module. If $\Lambda$ is taken to be a Nakayama algebra, then said tilting and cotilting module is a characteristic tilting module of a quasi-hereditary structure on the Auslander algebra. We prove that the self-injective Nakayama algebras are the only algebras with this property.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.