Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Quasi-probabilities in Conditioned Quantum Measurement and a Geometric/Statistical Interpretation of Aharonov's Weak Value (1607.06406v1)

Published 21 Jul 2016 in quant-ph

Abstract: We show that the joint behaviour of an arbitrary pair of quantum observables can be described by quasi-probabilities, which are extensions of the standard probabilities used for describing the behaviour of a single observable. The physical situations that require these quasi-probabilities arise when one considers quantum measurement of an observable conditioned by some other variable, with the notable example being the weak measurement employed to obtain Aharonov's weak value. Specifically, we present a general prescription for the construction of quasi-joint-probability (QJP) distributions associated with a given pair of observables. These QJP distributions are introduced in two complementary approaches: one from a bottom-up, strictly operational construction realised by examining the mathematical framework of the conditioned measurement scheme, and the other from a top-down viewpoint realised by applying the results of spectral theorem for normal operators and its Fourier transforms. It is then revealed that, for a pair of simultaneously measurable observables, the QJP distribution reduces to their unique standard joint-probability distribution, whereas for a non-commuting pair there exists an inherent indefiniteness in the choice, admitting a multitude of candidates that may equally be used for describing their joint behaviour. In the course of our argument, we find that the QJP distributions furnish the space of operators with their characteristic geometric structures such that the orthogonal projections and inner products of observables can, respectively, be given statistical interpretations as conditionings' andcorrelations'. The weak value $A_{w}$ for an observable $A$ is then given a geometric/statistical interpretation as either the orthogonal projection of $A$ onto the subspace generated by another observable $B$, or equivalently, as the conditioning of $A$ given $B$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube