Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Bayesian Analysis of Rank Data with Covariates and Heterogeneous Rankers (1607.06051v3)

Published 20 Jul 2016 in stat.ME

Abstract: Data in the form of ranking lists are frequently encountered, and combining ranking results from different sources can potentially generate a better ranking list and help understand behaviors of the rankers. Of interest here are the rank data under the following settings: (i) covariate information available for the ranked entities; (ii) rankers of varying qualities or having different opinions; and (iii) incomplete ranking lists for non-overlapping subgroups. We review some key ideas built around the Thurstone model family by researchers in the past few decades and provide a unifying approach for Bayesian Analysis of Rank data with Covariates (BARC) and its extensions in handling heterogeneous rankers. With this Bayesian framework, we can study rankers' varying quality, cluster rankers' heterogeneous opinions, and measure the corresponding uncertainties. To enable an efficient Bayesian inference, we advocate a parameter-expanded Gibbs sampler to sample from the target posterior distribution. The posterior samples also result in a Bayesian aggregated ranking list, with credible intervals quantifying its uncertainty. We investigate and compare performances of the proposed methods and other rank aggregation methods in both simulation studies and two real-data examples.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.