Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep learning trends for focal brain pathology segmentation in MRI (1607.05258v3)

Published 18 Jul 2016 in cs.CV

Abstract: Segmentation of focal (localized) brain pathologies such as brain tumors and brain lesions caused by multiple sclerosis and ischemic strokes are necessary for medical diagnosis, surgical planning and disease development as well as other applications such as tractography. Over the years, attempts have been made to automate this process for both clinical and research reasons. In this regard, machine learning methods have long been a focus of attention. Over the past two years, the medical imaging field has seen a rise in the use of a particular branch of machine learning commonly known as deep learning. In the non-medical computer vision world, deep learning based methods have obtained state-of-the-art results on many datasets. Recent studies in computer aided diagnostics have shown deep learning methods (and especially convolutional neural networks - CNN) to yield promising results. In this chapter, we provide a survey of CNN methods applied to medical imaging with a focus on brain pathology segmentation. In particular, we discuss their characteristic peculiarities and their specific configuration and adjustments that are best suited to segment medical images. We also underline the intrinsic differences deep learning methods have with other machine learning methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mohammad Havaei (31 papers)
  2. Nicolas Guizard (3 papers)
  3. Hugo Larochelle (87 papers)
  4. Pierre-Marc Jodoin (36 papers)
Citations (83)

Summary

We haven't generated a summary for this paper yet.