Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Kauffman type invariants for tied links (1607.04841v6)

Published 17 Jul 2016 in math.GT and math.GN

Abstract: We define two new invariants for tied links. One of them can be thought as an extension of the Kauffman polynomial and the other one as an extension of the Jones polynomial which is constructed via a bracket polynomial for tied links. These invariants are more powerful than both the Kauffman and the bracket polynomials when evaluated on classical links. Further, the extension of the Kauffman polynomial is more powerful of the Homflypt polynomial, as well as of certain new invariants introduced recently. Also we propose a new algebra which plays in the case of tied links the same role as the BMW algebra for the Kauffman polynomial in the classical case. Moreover, we prove that the Markov trace on this new algebra can be recovered from the extension of the Kauffman polynomial defined here.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.