Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequence Training and Adaptation of Highway Deep Neural Networks (1607.01963v5)

Published 7 Jul 2016 in cs.CL, cs.LG, and cs.NE

Abstract: Highway deep neural network (HDNN) is a type of depth-gated feedforward neural network, which has shown to be easier to train with more hidden layers and also generalise better compared to conventional plain deep neural networks (DNNs). Previously, we investigated a structured HDNN architecture for speech recognition, in which the two gate functions were tied across all the hidden layers, and we were able to train a much smaller model without sacrificing the recognition accuracy. In this paper, we carry on the study of this architecture with sequence-discriminative training criterion and speaker adaptation techniques on the AMI meeting speech recognition corpus. We show that these two techniques improve speech recognition accuracy on top of the model trained with the cross entropy criterion. Furthermore, we demonstrate that the two gate functions that are tied across all the hidden layers are able to control the information flow over the whole network, and we can achieve considerable improvements by only updating these gate functions in both sequence training and adaptation experiments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Liang Lu (42 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.