Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Small-footprint Deep Neural Networks with Highway Connections for Speech Recognition (1512.04280v4)

Published 14 Dec 2015 in cs.CL, cs.LG, and cs.NE

Abstract: For speech recognition, deep neural networks (DNNs) have significantly improved the recognition accuracy in most of benchmark datasets and application domains. However, compared to the conventional Gaussian mixture models, DNN-based acoustic models usually have much larger number of model parameters, making it challenging for their applications in resource constrained platforms, e.g., mobile devices. In this paper, we study the application of the recently proposed highway network to train small-footprint DNNs, which are {\it thinner} and {\it deeper}, and have significantly smaller number of model parameters compared to conventional DNNs. We investigated this approach on the AMI meeting speech transcription corpus which has around 70 hours of audio data. The highway neural networks constantly outperformed their plain DNN counterparts, and the number of model parameters can be reduced significantly without sacrificing the recognition accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Liang Lu (42 papers)
  2. Steve Renals (44 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.