Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Kimi K2 160 tok/s Pro
2000 character limit reached

Supersymmetric Backgrounds, the Killing Superalgebra, and Generalised Special Holonomy (1606.09304v1)

Published 29 Jun 2016 in hep-th and math.DG

Abstract: We prove that, for M theory or type II, generic Minkowski flux backgrounds preserving $\mathcal{N}$ supersymmetries in dimensions $D\geq4$ correspond precisely to integrable generalised $G_{\mathcal{N}}$ structures, where $G_{\mathcal{N}}$ is the generalised structure group defined by the Killing spinors. In other words, they are the analogues of special holonomy manifolds in $E_{d(d)} \times\mathbb{R}+$ generalised geometry. In establishing this result, we introduce the Kosmann-Dorfman bracket, a generalisation of Kosmann's Lie derivative of spinors. This allows us to write down the internal sector of the Killing superalgebra, which takes a rather simple form and whose closure is the key step in proving the main result. In addition, we find that the eleven-dimensional Killing superalgebra of these backgrounds is necessarily the supertranslational part of the $\mathcal{N}$-extended super-Poincar\'e algebra.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.