Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strategic Bidding for Producers in Nodal Electricity Markets: A Convex Relaxation Approach (1606.05979v1)

Published 20 Jun 2016 in math.OC and cs.DS

Abstract: Strategic bidding problems in electricity markets are widely studied in power systems, often by formulating complex bi-level optimization problems that are hard to solve. The state-of-the-art approach to solve such problems is to reformulate them as mixed-integer linear programs (MILPs). However, the computational time of such MILP reformulations grows dramatically, once the network size increases, scheduling horizon increases, or randomness is taken into consideration. In this paper, we take a fundamentally different approach and propose effective and customized convex programming tools to solve the strategic bidding problem for producers in nodal electricity markets. Our approach is inspired by the Schmudgen's Positivstellensatz Theorem in semi-algebraic geometry; but then we go through several steps based upon both convex optimization and mixed-integer programming that results in obtaining close to optimal bidding solutions, as evidenced by several numerical case studies, besides having a huge advantage on reducing computation time. While the computation time of the state-of-the-art MILP approach grows exponentially when we increase the scheduling horizon or the number of random scenarios, the computation time of our approach increases rather linearly.

Citations (44)

Summary

We haven't generated a summary for this paper yet.