Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A hybrid Quantum-Classical Algorithm for Mixed-Integer Optimization in Power Systems (2404.10693v1)

Published 16 Apr 2024 in quant-ph, cs.SY, and eess.SY

Abstract: Mixed Integer Linear Programming (MILP) can be considered the backbone of the modern power system optimization process, with a large application spectrum, from Unit Commitment and Optimal Transmission Switching to verifying Neural Networks for power system applications. The main issue of these formulations is the computational complexity of the solution algorithms, as they are considered NP-Hard problems. Quantum computing has been tested as a potential solution towards reducing the computational burden imposed by these problems, providing promising results, motivating the can be used to speedup the solution of MILPs. In this work, we present a general framework for solving power system optimization problems with a Quantum Computer (QC), which leverages mathematical tools and QCs' sampling ability to provide accelerated solutions. Our guiding applications are the optimal transmission switching and the verification of neural networks trained to solve a DC Optimal Power Flow. Specifically, using an accelerated version of Benders Decomposition , we split a given MILP into an Integer Master Problem and a linear Subproblem and solve it through a hybrid ``quantum-classical'' approach, getting the best of both worlds. We provide 2 use cases, and benchmark the developed framework against other classical and hybrid methodologies, to demonstrate the opportunities and challenges of hybrid quantum-classical algorithms for power system mixed integer optimization problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. A. Bhardwaj, V. K. Kamboj, V. K. Shukla, B. Singh, and P. Khurana, “Unit commitment in electrical power system-a literature review,” in 2012 IEEE international power engineering and optimization conference Melaka, Malaysia, pp. 275–280, IEEE, 2012.
  2. E. Samani and F. Aminifar, “Tri-level robust investment planning of ders in distribution networks with ac constraints,” IEEE Transactions on Power Systems, vol. 34, no. 5, pp. 3749–3757, 2019.
  3. A. Hinneck and D. Pozo, “Optimal transmission switching problem solving:parallelization and benchmarks,” 2021.
  4. A. Venzke, G. Qu, S. Low, and S. Chatzivasileiadis, “Learning optimal power flow: Worst-case guarantees for neural networks,” 2020.
  5. B. Tasseff, T. Albash, Z. Morrell, M. Vuffray, A. Y. Lokhov, S. Misra, and C. Coffrin, “On the emerging potential of quantum annealing hardware for combinatorial optimization,” 2022.
  6. R. Brown, D. E. B. Neira, D. Venturelli, and M. Pavone, “A copositive framework for analysis of hybrid ising-classical algorithms,” 2024.
  7. Z. Zhao, L. Fan, and Z. Han, “Hybrid quantum benders decomposition for mixed-integer linear programming,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC), p. 2536–2540, IEEE Press, 2022.
  8. N. G. Paterakis, “Hybrid quantum-classical multi-cut benders approach with a power system application,” Computers and Chemical Engineering, vol. 172, p. 108161, 2023.
  9. S. Golestan, M. Habibi, S. Mousazadeh Mousavi, J. Guerrero, and J. Vasquez, “Quantum computation in power systems: An overview of recent advances,” Energy Reports, vol. 9, pp. 584–596, 2023.
  10. B. Sævarsson, S. Chatzivasileiadis, H. Jóhannsson, and J. Østergaard, “Quantum computing for power flow algorithms: Testing on real quantum computers,” 2022.
  11. F. Feng, Y. Zhou, and P. Zhang, “Quantum power flow,” 2021.
  12. Y. Zhou and P. Zhang, “Noise-resilient quantum machine learning for stability assessment of power systems,” IEEE Transactions on Power Systems, vol. 38, no. 1, pp. 475–487, 2022.
  13. E. B. Jones, E. Kapit, C.-Y. Chang, D. Biagioni, D. Vaidhynathan, P. Graf, and W. Jones, “On the computational viability of quantum optimization for pmu placement,” 2020.
  14. N. Nikmehr, P. Zhang, and M. A. Bragin, “Quantum distributed unit commitment: An application in microgrids,” IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 3592–3603, 2022.
  15. F. Feng, P. Zhang, Y. Zhou, and Z. Tang, “Quantum microgrid state estimation,” Electric Power Systems Research, vol. 212, p. 108386, 2022.
  16. C. Gambella and A. Simonetto, “Multiblock admm heuristics for mixed-binary optimization on classical and quantum computers,” IEEE Transactions on Quantum Engineering, vol. 1, pp. 1–22, 2020.
  17. R. Mahroo and A. Kargarian, “Hybrid quantum-classical unit commitment,” in 2022 IEEE Texas Power and Energy Conference (TPEC), IEEE, Feb. 2022.
  18. “Code.” https://github.com/elpetros99/HybridQuantumMILP.git.
  19. R. D. Somma, D. Nagaj, and M. Kieferová, “Quantum speedup by quantum annealing,” Physical review letters, vol. 109, no. 5, p. 050501, 2012.
  20. L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices,” Physical Review X, vol. 10, no. 2, p. 021067, 2020.
  21. R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei, “The benders decomposition algorithm: A literature review,” European Journal of Operational Research, vol. 259, no. 3, pp. 801–817, 2017.
  22. T. L. Magnanti and R. T. Wong, “Accelerating benders decomposition: Algorithmic enhancement and model selection criteria,” Operations research, vol. 29, no. 3, pp. 464–484, 1981.
  23. A. Ruszczynski and A. Swietanowski, “Accelerating the regularized decomposition method for two stage stochastic linear problems,” European Journal of Operational Research, vol. 101, no. 2, pp. 328–342, 1997.
  24. N. Papadakos, “Practical enhancements to the magnanti–wong method,” Operations Research Letters, vol. 36, no. 4, pp. 444–449, 2008.
  25. A. Mercier, J.-F. Cordeau, and F. Soumis, “A computational study of benders decomposition for the integrated aircraft routing and crew scheduling problem,” Computers and Operations Research, vol. 32, no. 6, pp. 1451–1476, 2005.
  26. A. Mercier and F. Soumis, “An integrated aircraft routing, crew scheduling and flight retiming model,” Computers & Operations Research, vol. 34, no. 8, pp. 2251–2265, 2007.
  27. W.-L. Chang, R. Wong, W.-Y. Chung, Y.-H. Chen, J.-C. Chen, and A. V. Vasilakos, “Quantum speedup for the maximum cut problem,” 2023.
  28. A. Mandal, A. Roy, S. Upadhyay, and H. Ushijima-Mwesigwa, “Compressed quadratization of higher order binary optimization problems,” 2020.
  29. A. M. Geoffrion and G. W. Graves, “Multicommodity distribution system design by benders decomposition,” Management Science, vol. 20, no. 5, pp. 822–844, 1974.
  30. “D-wave leap.” https://cloud.dwavesys.com/leap/. Accessed on 2023-09-06.
  31. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023.
  32. “Operation and timing — d-wave system documentation documentation.”
  33. 2014.
  34. Springer Nature Switzerland, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com