Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast derivatives of likelihood functionals for ODE based models using adjoint-state method (1606.04406v5)

Published 14 Jun 2016 in stat.ME

Abstract: We consider time series data modeled by ordinary differential equations (ODEs), widespread models in physics, chemistry, biology and science in general. The sensitivity analysis of such dynamical systems usually requires calculation of various derivatives with respect to the model parameters. We employ the adjoint state method (ASM) for efficient computation of the first and the second derivatives of likelihood functionals constrained by ODEs with respect to the parameters of the underlying ODE model. Essentially, the gradient can be computed with a cost (measured by model evaluations) that is independent of the number of the ODE model parameters and the Hessian with a linear cost in the number of the parameters instead of the quadratic one. The sensitivity analysis becomes feasible even if the parametric space is high-dimensional. The main contributions are derivation and rigorous analysis of the ASM in the statistical context, when the discrete data are coupled with the continuous ODE model. Further, we present a highly optimized implementation of the results and its benchmarks on a number of problems. The results are directly applicable in (e.g.) maximum-likelihood estimation or Bayesian sampling of ODE based statistical models, allowing for faster, more stable estimation of parameters of the underlying ODE model.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.