Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact of Power System Partitioning on the Efficiency of Distributed Multi-Step Optimization (1606.00031v1)

Published 31 May 2016 in cs.DC and math.OC

Abstract: Recent studies have shown that multi-step optimization based on Model Predictive Control (MPC) can effectively coordinate the increasing number of distributed renewable energy and storage resources in the power system. However, the computation complexity of MPC is usually high which limits its use in practical implementation. To improve the efficiency of MPC, in this paper, we apply a distributed optimization method to MPC. The approach consists of a partitioning technique based on spectral clustering that determines the best system partition and an improved Optimality Condition Decomposition method that solves the optimization problem in a distributed manner. Results of simulations conducted on the IEEE 14-bus and 118-bus systems show that the distributed MPC problem can be solved significantly faster by using a good partition of the system and this partition is applicable to multiple time steps without frequent changes.

Citations (4)

Summary

We haven't generated a summary for this paper yet.