Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large problems are not necessarily hard: A case study on distributed NMPC paying off (2411.05627v2)

Published 8 Nov 2024 in math.OC, cs.SY, and eess.SY

Abstract: A key motivation in the development of Distributed Model Predictive Control (DMPC) is to accelerate centralized Model Predictive Control (MPC) for large-scale systems. DMPC has the prospect of scaling well by parallelizing computations among subsystems. However, communication delays may deteriorate the performance of decentralized optimization, if excessively many iterations are required per control step. Moreover, centralized solvers often exhibit faster asymptotic convergence rates and, by parallelizing costly linear algebra operations, they can also benefit from modern multicore computing architectures. On this canvas, we study the computational performance of cooperative DMPC for linear and nonlinear systems. To this end, we apply a tailored decentralized real-time iteration scheme to frequency control for power systems. DMPC scales well for the considered linear and nonlinear benchmarks, as the iteration number does not depend on the number of subsystems. Comparisons with multi-threaded centralized solvers demonstrate competitive performance of the proposed decentralized optimization algorithms.

Summary

We haven't generated a summary for this paper yet.