Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Photographic Composition via Triangles (1605.09559v1)

Published 31 May 2016 in cs.CV

Abstract: The capacity of automatically modeling photographic composition is valuable for many real-world machine vision applications such as digital photography, image retrieval, image understanding, and image aesthetics assessment. The triangle technique is among those indispensable composition methods on which professional photographers often rely. This paper proposes a system that can identify prominent triangle arrangements in two major categories of photographs: natural or urban scenes, and portraits. For the natural or urban scene pictures, the focus is on the effect of linear perspective. For portraits, we carefully examine the positioning of human subjects in a photo. We show that line analysis is highly advantageous for modeling composition in both categories. Based on the detected triangles, new mathematical descriptors for composition are formulated and used to retrieve similar images. Leveraging the rich source of high aesthetics photos online, similar approaches can potentially be incorporated in future smart cameras to enhance a person's photo composition skills.

Citations (1)

Summary

We haven't generated a summary for this paper yet.