Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Function Norm Regularization of Deep Networks (1605.09085v3)

Published 30 May 2016 in cs.LG, cs.CV, and stat.ML

Abstract: Deep neural networks have had an enormous impact on image analysis. State-of-the-art training methods, based on weight decay and DropOut, result in impressive performance when a very large training set is available. However, they tend to have large problems overfitting to small data sets. Indeed, the available regularization methods deal with the complexity of the network function only indirectly. In this paper, we study the feasibility of directly using the $L_2$ function norm for regularization. Two methods to integrate this new regularization in the stochastic backpropagation are proposed. Moreover, the convergence of these new algorithms is studied. We finally show that they outperform the state-of-the-art methods in the low sample regime on benchmark datasets (MNIST and CIFAR10). The obtained results demonstrate very clear improvement, especially in the context of small sample regimes with data laying in a low dimensional manifold. Source code of the method can be found at \url{https://github.com/AmalRT/DNN_Reg}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Amal Rannen Triki (6 papers)
  2. Matthew B. Blaschko (65 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.