Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Sparse Filters in Deep Convolutional Neural Networks with a l1/l2 Pseudo-Norm (2007.10022v1)

Published 20 Jul 2020 in cs.NE and cs.LG

Abstract: While deep neural networks (DNNs) have proven to be efficient for numerous tasks, they come at a high memory and computation cost, thus making them impractical on resource-limited devices. However, these networks are known to contain a large number of parameters. Recent research has shown that their structure can be more compact without compromising their performance. In this paper, we present a sparsity-inducing regularization term based on the ratio l1/l2 pseudo-norm defined on the filter coefficients. By defining this pseudo-norm appropriately for the different filter kernels, and removing irrelevant filters, the number of kernels in each layer can be drastically reduced leading to very compact Deep Convolutional Neural Networks (DCNN) structures. Unlike numerous existing methods, our approach does not require an iterative retraining process and, using this regularization term, directly produces a sparse model during the training process. Furthermore, our approach is also much easier and simpler to implement than existing methods. Experimental results on MNIST and CIFAR-10 show that our approach significantly reduces the number of filters of classical models such as LeNet and VGG while reaching the same or even better accuracy than the baseline models. Moreover, the trade-off between the sparsity and the accuracy is compared to other loss regularization terms based on the l1 or l2 norm as well as the SSL, NISP and GAL methods and shows that our approach is outperforming them.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Anthony Berthelier (3 papers)
  2. Yongzhe Yan (3 papers)
  3. Thierry Chateau (9 papers)
  4. Christophe Blanc (13 papers)
  5. Stefan Duffner (14 papers)
  6. Christophe Garcia (8 papers)
Citations (7)