Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Model Selection of Stochastic Block Models (1605.07057v1)

Published 23 May 2016 in stat.ML, cs.LG, and cs.SI

Abstract: A central problem in analyzing networks is partitioning them into modules or communities. One of the best tools for this is the stochastic block model, which clusters vertices into blocks with statistically homogeneous pattern of links. Despite its flexibility and popularity, there has been a lack of principled statistical model selection criteria for the stochastic block model. Here we propose a Bayesian framework for choosing the number of blocks as well as comparing it to the more elaborate degree- corrected block models, ultimately leading to a universal model selection framework capable of comparing multiple modeling combinations. We will also investigate its connection to the minimum description length principle.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Xiaoran Yan (24 papers)
Citations (34)

Summary

We haven't generated a summary for this paper yet.