Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A class of network models recoverable by spectral clustering (2104.10347v1)

Published 21 Apr 2021 in stat.ML and cs.LG

Abstract: Finding communities in networks is a problem that remains difficult, in spite of the amount of attention it has recently received. The Stochastic Block-Model (SBM) is a generative model for graphs with "communities" for which, because of its simplicity, the theoretical understanding has advanced fast in recent years. In particular, there have been various results showing that simple versions of spectral clustering using the Normalized Laplacian of the graph can recover the communities almost perfectly with high probability. Here we show that essentially the same algorithm used for the SBM and for its extension called Degree-Corrected SBM, works on a wider class of Block-Models, which we call Preference Frame Models, with essentially the same guarantees. Moreover, the parametrization we introduce clearly exhibits the free parameters needed to specify this class of models, and results in bounds that expose with more clarity the parameters that control the recovery error in this model class.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yali Wan (3 papers)
  2. Marina Meila (29 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.