Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Factored Temporal Sigmoid Belief Networks for Sequence Learning (1605.06715v1)

Published 22 May 2016 in stat.ML and cs.LG

Abstract: Deep conditional generative models are developed to simultaneously learn the temporal dependencies of multiple sequences. The model is designed by introducing a three-way weight tensor to capture the multiplicative interactions between side information and sequences. The proposed model builds on the Temporal Sigmoid Belief Network (TSBN), a sequential stack of Sigmoid Belief Networks (SBNs). The transition matrices are further factored to reduce the number of parameters and improve generalization. When side information is not available, a general framework for semi-supervised learning based on the proposed model is constituted, allowing robust sequence classification. Experimental results show that the proposed approach achieves state-of-the-art predictive and classification performance on sequential data, and has the capacity to synthesize sequences, with controlled style transitioning and blending.

Citations (10)

Summary

We haven't generated a summary for this paper yet.