Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Estimation of a Multiplicative Correlation Structure in the Large Dimensional Case (1605.04838v5)

Published 16 May 2016 in math.ST and stat.TH

Abstract: We propose a Kronecker product model for correlation or covariance matrices in the large dimensional case. The number of parameters of the model increases logarithmically with the dimension of the matrix. We propose a minimum distance (MD) estimator based on a log-linear property of the model, as well as a one-step estimator, which is a one-step approximation to the quasi-maximum likelihood estimator (QMLE). We establish rates of convergence and central limit theorems (CLT) for our estimators in the large dimensional case. A specification test and tools for Kronecker product model selection and inference are provided. In a Monte Carlo study where a Kronecker product model is correctly specified, our estimators exhibit superior performance. In an empirical application to portfolio choice for SP500 daily returns, we demonstrate that certain Kronecker product models are good approximations to the general covariance matrix.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.