Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Non-Convex Blind Calibration Method for Randomised Sensing Strategies (1605.02615v3)

Published 9 May 2016 in cs.IT, math.IT, and math.OC

Abstract: The implementation of computational sensing strategies often faces calibration problems typically solved by means of multiple, accurately chosen training signals, an approach that can be resource-consuming and cumbersome. Conversely, blind calibration does not require any training, but corresponds to a bilinear inverse problem whose algorithmic solution is an open issue. We here address blind calibration as a non-convex problem for linear random sensing models in which we aim to recover an unknown signal from its projections on sub-Gaussian random vectors, each of which is subject to an unknown multiplicative factor (gain). To solve this optimisation problem we resort to projected gradient descent starting from a suitable initialisation. An analysis of this algorithm allows us to show that it converges to the global optimum provided a sample complexity requirement is met, i.e., relating convergence to the amount of information collected during the sensing process. Finally, we present some numerical experiments in which our algorithm allows for a simple solution to blind calibration of sensor gains in computational sensing applications.

Citations (19)

Summary

We haven't generated a summary for this paper yet.