Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Sample Complexity for Blind Gain and Phase Calibration (1512.07293v1)

Published 22 Dec 2015 in cs.IT and math.IT

Abstract: Blind gain and phase calibration (BGPC) is a structured bilinear inverse problem, which arises in many applications, including inverse rendering in computational relighting (albedo estimation with unknown lighting), blind phase and gain calibration in sensor array processing, and multichannel blind deconvolution. The fundamental question of the uniqueness of the solutions to such problems has been addressed only recently. In a previous paper, we proposed studying the identifiability in bilinear inverse problems up to transformation groups. In particular, we studied several special cases of blind gain and phase calibration, including the cases of subspace and joint sparsity models on the signals, and gave sufficient and necessary conditions for identifiability up to certain transformation groups. However, there were gaps between the sample complexities in the sufficient conditions and the necessary conditions. In this paper, under a mild assumption that the signals and models are generic, we bridge the gaps by deriving tight sufficient conditions with optimal sample complexities.

Citations (21)

Summary

We haven't generated a summary for this paper yet.