Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An expressive dissimilarity measure for relational clustering using neighbourhood trees (1604.08934v2)

Published 29 Apr 2016 in stat.ML, cs.AI, and cs.LG

Abstract: Clustering is an underspecified task: there are no universal criteria for what makes a good clustering. This is especially true for relational data, where similarity can be based on the features of individuals, the relationships between them, or a mix of both. Existing methods for relational clustering have strong and often implicit biases in this respect. In this paper, we introduce a novel similarity measure for relational data. It is the first measure to incorporate a wide variety of types of similarity, including similarity of attributes, similarity of relational context, and proximity in a hypergraph. We experimentally evaluate how using this similarity affects the quality of clustering on very different types of datasets. The experiments demonstrate that (a) using this similarity in standard clustering methods consistently gives good results, whereas other measures work well only on datasets that match their bias; and (b) on most datasets, the novel similarity outperforms even the best among the existing ones.

Citations (13)

Summary

We haven't generated a summary for this paper yet.