Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Clustering with Prior Knowledge (1806.03432v3)

Published 9 Jun 2018 in stat.ML and cs.LG

Abstract: Hierarchical clustering is a class of algorithms that seeks to build a hierarchy of clusters. It has been the dominant approach to constructing embedded classification schemes since it outputs dendrograms, which capture the hierarchical relationship among members at all levels of granularity, simultaneously. Being greedy in the algorithmic sense, a hierarchical clustering partitions data at every step solely based on a similarity / dissimilarity measure. The clustering results oftentimes depend on not only the distribution of the underlying data, but also the choice of dissimilarity measure and the clustering algorithm. In this paper, we propose a method to incorporate prior domain knowledge about entity relationship into the hierarchical clustering. Specifically, we use a distance function in ultrametric space to encode the external ontological information. We show that popular linkage-based algorithms can faithfully recover the encoded structure. Similar to some regularized machine learning techniques, we add this distance as a penalty term to the original pairwise distance to regulate the final structure of the dendrogram. As a case study, we applied this method on real data in the building of a customer behavior based product taxonomy for an Amazon service, leveraging the information from a larger Amazon-wide browse structure. The method is useful when one wants to leverage the relational information from external sources, or the data used to generate the distance matrix is noisy and sparse. Our work falls in the category of semi-supervised or constrained clustering.

Citations (8)

Summary

We haven't generated a summary for this paper yet.