Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reservoir computing for spatiotemporal signal classification without trained output weights (1604.03073v2)

Published 11 Apr 2016 in cs.NE, cs.CV, and cs.LG

Abstract: Reservoir computing is a recently introduced machine learning paradigm that has been shown to be well-suited for the processing of spatiotemporal data. Rather than training the network node connections and weights via backpropagation in traditional recurrent neural networks, reservoirs instead have fixed connections and weights among the `hidden layer' nodes, and traditionally only the weights to the output layer of neurons are trained using linear regression. We claim that for signal classification tasks one may forgo the weight training step entirely and instead use a simple supervised clustering method based upon principal components of norms of reservoir states. The proposed method is mathematically analyzed and explored through numerical experiments on real-world data. The examples demonstrate that the proposed may outperform the traditional trained output weight approach in terms of classification accuracy and sensitivity to reservoir parameters.

Citations (1)

Summary

We haven't generated a summary for this paper yet.