Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distance for Functional Data Clustering Based on Smoothing Parameter Commutation (1604.02668v1)

Published 10 Apr 2016 in stat.ME, stat.AP, and stat.ML

Abstract: We propose a novel method to determine the dissimilarity between subjects for functional data clustering. Spline smoothing or interpolation is common to deal with data of such type. Instead of estimating the best-representing curve for each subject as fixed during clustering, we measure the dissimilarity between subjects based on varying curve estimates with commutation of smoothing parameters pair-by-pair (of subjects). The intuitions are that smoothing parameters of smoothing splines reflect inverse signal-to-noise ratios and that applying an identical smoothing parameter the smoothed curves for two similar subjects are expected to be close. The effectiveness of our proposal is shown through simulations comparing to other dissimilarity measures. It also has several pragmatic advantages. First, missing values or irregular time points can be handled directly, thanks to the nature of smoothing splines. Second, conventional clustering method based on dissimilarity can be employed straightforward, and the dissimilarity also serves as a useful tool for outlier detection. Third, the implementation is almost handy since subroutines for smoothing splines and numerical integration are widely available. Fourth, the computational complexity does not increase and is parallel with that in calculating Euclidean distance between curves estimated by smoothing splines.

Citations (1)

Summary

We haven't generated a summary for this paper yet.