Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

L1 Control Theoretic Smoothing Splines (1407.1697v2)

Published 7 Jul 2014 in cs.IT, cs.SY, math.IT, math.OC, and stat.CO

Abstract: In this paper, we propose control theoretic smoothing splines with L1 optimality for reducing the number of parameters that describes the fitted curve as well as removing outlier data. A control theoretic spline is a smoothing spline that is generated as an output of a given linear dynamical system. Conventional design requires exactly the same number of base functions as given data, and the result is not robust against outliers. To solve these problems, we propose to use L1 optimality, that is, we use the L1 norm for the regularization term and/or the empirical risk term. The optimization is described by a convex optimization, which can be efficiently solved via a numerical optimization software. A numerical example shows the effectiveness of the proposed method.

Citations (5)

Summary

We haven't generated a summary for this paper yet.