Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sufficient Conditions for Existence of $J_α(X + \sqrt[α]ηN)$ (1604.02058v1)

Published 7 Apr 2016 in cs.IT and math.IT

Abstract: In his technical report~\cite[sec. 6]{barrontech}, Barron states that the de Bruijn's identity for Gaussian perturbations holds for any RV having a finite variance. In this report, we follow Barron's steps as we prove the existence of $J_{\alpha}\left(X + \sqrt[\alpha]{\eta}N\right)$, $\eta > 0$ for any Radom Variable (RV) $X \in \mathcal{L}$ where \begin{equation*} \mathcal{L} = \left{ \text{RVs} \,\,U: \int \ln\left(1 + |U|\right)\,dF_{U}(u) \text{ is finite } \right}, \end{equation*} and where $N \sim \mathcal{S}(\alpha;1)$ is independent of $X$, $0< \alpha <2$.

Summary

We haven't generated a summary for this paper yet.