Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sentence Level Recurrent Topic Model: Letting Topics Speak for Themselves (1604.02038v2)

Published 7 Apr 2016 in cs.LG, cs.CL, and cs.IR

Abstract: We propose Sentence Level Recurrent Topic Model (SLRTM), a new topic model that assumes the generation of each word within a sentence to depend on both the topic of the sentence and the whole history of its preceding words in the sentence. Different from conventional topic models that largely ignore the sequential order of words or their topic coherence, SLRTM gives full characterization to them by using a Recurrent Neural Networks (RNN) based framework. Experimental results have shown that SLRTM outperforms several strong baselines on various tasks. Furthermore, SLRTM can automatically generate sentences given a topic (i.e., topics to sentences), which is a key technology for real world applications such as personalized short text conversation.

Citations (23)

Summary

We haven't generated a summary for this paper yet.