Recurrent Hierarchical Topic-Guided RNN for Language Generation (1912.10337v2)
Abstract: To simultaneously capture syntax and global semantics from a text corpus, we propose a new larger-context recurrent neural network (RNN) based LLM, which extracts recurrent hierarchical semantic structure via a dynamic deep topic model to guide natural language generation. Moving beyond a conventional RNN-based LLM that ignores long-range word dependencies and sentence order, the proposed model captures not only intra-sentence word dependencies, but also temporal transitions between sentences and inter-sentence topic dependencies. For inference, we develop a hybrid of stochastic-gradient Markov chain Monte Carlo and recurrent autoencoding variational Bayes. Experimental results on a variety of real-world text corpora demonstrate that the proposed model not only outperforms larger-context RNN-based LLMs, but also learns interpretable recurrent multilayer topics and generates diverse sentences and paragraphs that are syntactically correct and semantically coherent.
- Dandan Guo (19 papers)
- Bo Chen (309 papers)
- Ruiying Lu (11 papers)
- Mingyuan Zhou (161 papers)