Papers
Topics
Authors
Recent
Search
2000 character limit reached

A simple proof of exponential decay of subcritical contact processes

Published 30 Mar 2016 in math.PR | (1603.09142v2)

Abstract: This paper gives a new, simple proof of the known fact that for contact processes on general lattices, in the subcritical regime the expected number of infected sites decays exponentially fast as time tends to infinity. The proof also yields an explicit bound on the survival probability below the critical recovery rate, which shows that the critical exponent associated with this function is bounded from below by its mean-field value. The main idea of the proof is that if the expected number of infected sites decays slower than exponentially, then this implies the existence of a harmonic function that can be used to show that the process survives for any lower value of the recovery rate.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.