Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Personalized PageRank on Dynamic Graphs (1603.07796v2)

Published 25 Mar 2016 in cs.DS

Abstract: We propose and analyze two algorithms for maintaining approximate Personalized PageRank (PPR) vectors on a dynamic graph, where edges are added or deleted. Our algorithms are natural dynamic versions of two known local variations of power iteration. One, Forward Push, propagates probability mass forwards along edges from a source node, while the other, Reverse Push, propagates local changes backwards along edges from a target. In both variations, we maintain an invariant between two vectors, and when an edge is updated, our algorithm first modifies the vectors to restore the invariant, then performs any needed local push operations to restore accuracy. For Reverse Push, we prove that for an arbitrary directed graph in a random edge model, or for an arbitrary undirected graph, given a uniformly random target node $t$, the cost to maintain a PPR vector to $t$ of additive error $\varepsilon$ as $k$ edges are updated is $O(k + \bar{d} / \varepsilon)$, where $\bar{d}$ is the average degree of the graph. This is $O(1)$ work per update, plus the cost of computing a reverse vector once on a static graph. For Forward Push, we show that on an arbitrary undirected graph, given a uniformly random start node $s$, the cost to maintain a PPR vector from $s$ of degree-normalized error $\varepsilon$ as $k$ edges are updated is $O(k + 1 / \varepsilon)$, which is again $O(1)$ per update plus the cost of computing a PPR vector once on a static graph.

Citations (81)

Summary

We haven't generated a summary for this paper yet.