Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

The conjugacy action of $S_n$ and modules induced from centralisers (1603.05898v2)

Published 18 Mar 2016 in math.RT, math.CO, and math.GR

Abstract: We establish, for the character table of the symmetric group, the positivity of the row sums indexed by irreducible characters, when restricted to various subsets of the conjugacy classes. A notable example is that of partitions with all parts odd. More generally, we study representations related to the conjugacy action of the symmetric group. These arise as sums of submodules induced from centraliser subgroups, and their Frobenius characteristics have elegant descriptions, often as a multiplicity-free sum of power-sum symmetric functions. We describe a general framework in which such representations, and consequently such linear combinations of power-sums, can be analysed. The conjugacy action for the symmetric group, and more generally for a large class of groups, is known to contain every irreducible. We find other representations of dimension $n!$ with this property, including a twisted analogue of the conjugacy action.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Youtube Logo Streamline Icon: https://streamlinehq.com