Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Estimating orthant probabilities of high dimensional Gaussian vectors with an application to set estimation (1603.05031v3)

Published 16 Mar 2016 in stat.ME

Abstract: The computation of Gaussian orthant probabilities has been extensively studied for low-dimensional vectors. Here, we focus on the high-dimensional case and we present a two-step procedure relying on both deterministic and stochastic techniques. The proposed estimator relies indeed on splitting the probability into a low-dimensional term and a remainder. While the low-dimensional probability can be estimated by fast and accurate quadrature, the remainder requires Monte Carlo sampling. We further refine the estimation by using a novel asymmetric nested Monte Carlo (anMC) algorithm for the remainder and we highlight cases where this approximation brings substantial efficiency gains. The proposed methods are compared against state-of-the-art techniques in a numerical study, which also calls attention to the advantages and drawbacks of the procedure. Finally, the proposed method is applied to derive conservative estimates of excursion sets of expensive to evaluate deterministic functions under a Gaussian random field prior, without requiring a Markov assumption. Supplementary material for this article is available online.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.