Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$\ell_1$ Adaptive Trend Filter via Fast Coordinate Descent (1603.03799v2)

Published 11 Mar 2016 in stat.AP, math.OC, and stat.ML

Abstract: Identifying the unknown underlying trend of a given noisy signal is extremely useful for a wide range of applications. The number of potential trends might be exponential, which can be computationally exhaustive even for short signals. Another challenge, is the presence of abrupt changes and outliers at unknown times which impart resourceful information regarding the signal's characteristics. In this paper, we present the $\ell_1$ Adaptive Trend Filter, which can consistently identify the components in the underlying trend and multiple level-shifts, even in the presence of outliers. Additionally, an enhanced coordinate descent algorithm which exploit the filter design is presented. Some implementation details are discussed and a version in the Julia language is presented along with two distinct applications to illustrate the filter's potential.

Citations (5)

Summary

We haven't generated a summary for this paper yet.