Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to monitor and mitigate stair-casing in l1 trend filtering (1412.0607v1)

Published 1 Dec 2014 in math.ST, cs.SY, stat.ML, and stat.TH

Abstract: In this paper we study the estimation of changing trends in time-series using $\ell_1$ trend filtering. This method generalizes 1D Total Variation (TV) denoising for detection of step changes in means to detecting changes in trends, and it relies on a convex optimization problem for which there are very efficient numerical algorithms. It is known that TV denoising suffers from the so-called stair-case effect, which leads to detecting false change points. The objective of this paper is to show that $\ell_1$ trend filtering also suffers from a certain stair-case problem. The analysis is based on an interpretation of the dual variables of the optimization problem in the method as integrated random walk. We discuss consistency conditions for $\ell_1$ trend filtering, how to monitor their fulfiLLMent, and how to modify the algorithm to avoid the stair-case false detection problem.

Citations (12)

Summary

We haven't generated a summary for this paper yet.