Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Well-posedness of hyperbolic systems with multiplicities and smooth coefficients (1603.03602v2)

Published 11 Mar 2016 in math.AP

Abstract: We study hyperbolic systems with multiplicities and smo-oth coefficients. In the case of non-analytic, smooth coefficients, we prove well-posedness in any Gevrey class and when the coefficients are analytic, we prove $C\infty$ well-posedness. The proof is based on a transformation to block Sylvester form introduced by D'Ancona and Spagnolo in Ref. 9 which increases the system size but does not change the eigenvalues. This reduction introduces lower order terms for which appropriate Levi-type conditions are found. These translate then into conditions on the original coefficient matrix. This paper can be considered as a generalisation of Ref. 12, where weakly hyperbolic higher order equations with lower order terms were considered.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.