Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Starting Small -- Learning with Adaptive Sample Sizes (1603.02839v2)

Published 9 Mar 2016 in cs.LG

Abstract: For many machine learning problems, data is abundant and it may be prohibitive to make multiple passes through the full training set. In this context, we investigate strategies for dynamically increasing the effective sample size, when using iterative methods such as stochastic gradient descent. Our interest is motivated by the rise of variance-reduced methods, which achieve linear convergence rates that scale favorably for smaller sample sizes. Exploiting this feature, we show -- theoretically and empirically -- how to obtain significant speed-ups with a novel algorithm that reaches statistical accuracy on an $n$-sample in $2n$, instead of $n \log n$ steps.

Summary

We haven't generated a summary for this paper yet.