Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Learning Functions: When Is Deep Better Than Shallow (1603.00988v4)

Published 3 Mar 2016 in cs.LG

Abstract: While the universal approximation property holds both for hierarchical and shallow networks, we prove that deep (hierarchical) networks can approximate the class of compositional functions with the same accuracy as shallow networks but with exponentially lower number of training parameters as well as VC-dimension. This theorem settles an old conjecture by Bengio on the role of depth in networks. We then define a general class of scalable, shift-invariant algorithms to show a simple and natural set of requirements that justify deep convolutional networks.

Citations (142)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.