Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

LiDAR Ground Filtering Algorithm for Urban Areas Using Scan Line Based Segmentation (1603.00912v1)

Published 2 Mar 2016 in cs.CV

Abstract: This paper addresses the task of separating ground points from airborne LiDAR point cloud data in urban areas. A novel ground filtering method using scan line segmentation is proposed here, which we call SLSGF. It utilizes the scan line information in LiDAR data to segment the LiDAR data. The similarity measurements are designed to make it possible to segment complex roof structures into a single segment as much as possible so the topological relationships between the roof and the ground are simpler, which will benefit the labeling process. In the labeling process, the initial ground segments are detected and a coarse to fine labeling scheme is applied. Data from ISPRS 2011 are used to test the accuracy of SLSGF; and our analytical and experimental results show that this method is computationally-efficient and noise-insensitive, thereby making a denoising process unnecessary before filtering.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.